IA : Tamba

LYCEE : KOUMPENTOUM

Année Scolaire : 2022/2023

Classe : Terminale L

Durée : 2h

DEVOIR DE MATHEMATIQUES N°1

Cellule : Mathématiques

EXERCICE N°1

(7points)

Soit la fonction f définie par : $f(x) = \frac{3x^2}{x^2+3}$. (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Déterminer le domaine de définition D_f de f.
- 2. Déterminer les limites de f aux bornes de D_f .
- 3. Préciser les asymptotes à la courbe (C_f) de f.
- 4. Etudier la parité de la fonction f(x).
- 5. Parmi les propriétés suivantes recopier celles qui sont vraies.
 - a. Si une fonction est paire alors l'axe des abscisses est un axe de symétrie de sa courbe.
 - b. Si une fonction est paire alors l'axe des ordonnées est un axe de symétrie de sa courbe.
 - c. Si une fonction est impaire alors l'origine du repère est un centre de symétrie de sa courbe.
- 6. Montrer que la fonction dérivée f' de f est definie par : $f'(x) = \frac{18x}{(x^2+3)^2}$.
- 7. Dresser le tableau de variation de f.

EXERCICE N°2

(13points)

Soit la fonction numérique f de la variable réelle x, définie par $f(x) = \frac{x^2 - x - 6}{x - 2}$, (Cf) sa courbe représentative dans un repère orthonormé (o, \vec{i} , \vec{j}), unité graphique 1cm.

- 1. Déterminer l'ensemble de définition Df de f, puis déterminer les limites de f aux bornes de Df.
- 2. a. Montrer que $f(x) = x + 1 \frac{4}{x-2}$.
 - b. En déduire que la droite (D) d'équation y = x + 1 est une asymptote oblique à (Cf).
 - c. Etudier la position de la courbe (Cf) par rapport à la droite (D).
- 3. Préciser les autres asymptotes.
- 4. Montrer que le point S (2; 3) est un centre de symétrie de (Cf).
- 5. Déterminer pour tout $x \in Df$, f'(x) puis établir le tableau de variation de f.
- 6. Déterminer les coordonnées du point I sachant que I est le point d'intersection de (Cf) et l'axe des ordonnées.
- 7. a. Montrer que (Cf) rencontre l'axe des abscisses aux points A et B d'abscisse respectives $x_A = -2$ et $x_B = 3$.
 - b. Donner une équation de la tangente à (Cf) en A.

Bonne Chance!